known geometrical array of individual atoms—all noble gases (except the special case of He) crystallize in the face centered cubic lattice (space group $-O_h^5$ or Fm3m)— with weak van der Waals forces holding the lattice together. The equation of state of frozen Ne, Ar, Kr and Xe was developed already twenty years ago by KANE.⁽¹⁰⁾ Recently, the quantum mechanical variational method was applied to an Einstein model of a solid and the equation of state of the same solid gases developed by

Metal	D ₀ , °K. (g/cm ³)	Lit.	At.wt. ${}^{12}C =$ 12.0000	V ^{0°K,} (cm ³ /g atom)	(ų/atom)	(Å)	do (Å)	Crystal System	Atoms/ cell	Space Group
Ne	1.544	13	20.183	13.07	21.70	4.427	3.131	f.c.c.	4	0,5
Ar	1.827	13	39.948	21.86	36.29	5.255	3.716	f.c.c.	4	0,5
Kr	3.093	14	83.80	27.09	44.96	5.645	3.991	f.c.c.	4	0,5
Xe	3.783	15	131.30	34.71	57.60	6.131	4.335	f.c.c.	4	0,5
Em	(5.25)		222.0	(42.3)	(70.2)	(6.50)	(4.63)	(f.c.c.)	(4)	(Oh 5)

Table 1.—Selected values of the atomic constants of the solid noble gases, all at $0^{\circ}K$

TABLE 2.—BERNARDES'(11)	SELECTION	OF NOBLE	GAS	CONSTANTS
-------------------------	-----------	----------	-----	-----------

Metal	V_{at} 0°K (cm ³ /g atom)	Heat of Sublimation at 0°K (cal/g atom)
Ne	13.1	420
Ar	22.6	1852
Kr	27.5	2630
Xe	35.1	3824

BERNARDES.⁽¹¹⁾ The change of volume with pressure and the compressibility follow directly from the two-body potential parameters (σ and ε), which are selected to give the best fit with the experimental atomic volume and heat of sublimation, both at 0°K (see Tables 1 and 2). The theoretical deviation of quantum mechanical laws of corresponding states from classical behaviour for the various properties, including compressibility, of the solid noble gases at 0°K was also determined recently by BERNARDES.⁽¹²⁾

The most precise lattice parameters of solid neon and argon at $4\cdot 2^{\circ}$ K were determined by neutron diffraction by HENSHAW⁽¹³⁾ and those of krypton⁽¹⁴⁾ and xenon⁽¹⁵⁾ by SMITH from X-ray data at 20° to 120° K.

The values selected by us are correlated in Table 1. It should be clarified here that the inorganic chemist is used to compare atomic volumes, $V_{\rm at.}$, in cm³/g atom, defined as at. wt./density, D, in g/cm³, while the crystallographer uses the dimensions and angles of a unit cell. The physicist thinks of the same properties in units of

⁽¹⁰⁾ G. KANE, *Phys. Rev.*, 7, 603–613 (1939); see also J. O. HIRSCHFELDER, C. I. CURTIS and R. B. BIRD, *Molecular Theory of Gases and Liquids*, pp. 1035–1044. J. Wiley, New York (1954).

- ⁽¹¹⁾ N. BERNARDES, *Phys. Rev.* **112**, 1534–39 (1958).
- (12) N. BERNARDES, Phys. Rev. 120, 807-813 (1960).
- (18) D. G. HENSHAW, Phys. Rev. 111, 1470-1475 (1958).

(14) B. F. FIGGINS and B. L. SMITH, Phil. Mag. [8] 5, 186-8 (1960).

(15) A. J. EATWELL and B. L. SMITH, Phil. Mag. [8] 6, 461-3 (1961).

1804

0